Application of Data Mining for Student Department Using Naive Bayes Classifier Algorithm
Main Article Content
Abstract
SMAN 02 Negeri Agung does not have a system that can assist schools in determining majors. The problem that occurs is that SMAN 02 Negeri Agung, when doing majors, still uses existing data, for example, using a majoring interest questionnaire, there are questions about the interests that students want, and the values of their junior high school report cards, which consist of Indonesian, Mathematics, Science, Social Studies, and English. However, there are still many students who choose majors not based on their interests or historical grades, such as following friends' choices. This can hinder student academic activities in the future, which will affect the value and development of student potential. With this major system, it is hoped that it can help schools and students minimize errors in determining and choosing a major. Based on the problems described above, the authors want to apply the Naïve Bayes method, which will produce a high level of accuracy in determining new student majors more effectively and efficiently.
Downloads
Article Details
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to journal Tech-E, Universitas Buddhi Dharma as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from journal Tech-E.
journal Tech-E, the Editors and the Advisory Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the journal Tech-E, Universitas Buddhi Dharma are sole and exclusive responsibility of their respective authors and advertisers.
Abstract views: 234 / PDF downloads: 167